Outdoor biting behaviour and insecticide resistance in malaria vectors might challenge malaria elimination in Southern Province, Zambia

Javan Chanda¹, Kochelani Saili¹, Christopher Lungu¹, Chadwick Sikala², John Miller¹
¹PATH Malaria Control and Elimination Partnership in Africa (MACEPA); ²Government of the Republic of Zambia, Ministry of Health, National Malaria Elimination Centre

Background
- In the last decade, malaria has been reduced in Africa by 33% as a result of the rapid roll-out of malaria control interventions (WHO, 2011).
- In Zambia, long-lasting insecticide-treated nets (LLINs) and indoor residual spraying (IRS) are the main malaria vector control interventions.
- The use of these interventions depends on high coverage, vector susceptibility status to insecticides, and the indoor biting and resting behaviour of malaria vectors.
- However, there is limited information on the behaviour of malaria vectors and their susceptibility to insecticides used for vector control in Zambia’s Southern Province.
- This study aimed to monitor vector behaviour, species vector composition, and vector susceptibility to insecticides used for malaria vector control in Southern Province to guide the malaria elimination agenda.

Methods
- Indoor, host-seeking mosquitoes were collected from 36 randomly selected houses from April to May 2015 and from November to December 2015 using Human Landing Catches, a method used to collect live mosquitoes attempting to bite human baits both inside and outside a house.
- Three pairs of human landing collectors were recruited and trained in 12 study areas on how to collect mosquitoes. Mosquito collection was conducted on an hourly basis starting from 18:00 and ending at 06:00 for 15 consecutive days. Individual mosquito collectors were given one tablet of deltamethrin once a week as a prophylactic drug.
- Insecticide susceptibility tests were conducted on 0.05% deltamethrin, 0.1% bendiocarb, 4% DDT, and 0.25% pirimiphos-methyl following the WHO standard protocol. Metabolic resistance was determined in populations of *A. gambiae* s.l and *A. funestus* by using a synergist piperonyl butoxide (PBO).
- Multiplex Polymerase Chain Reaction (PCR) was used to determine sibling species of *A. gambiae* s.l and *Anopheles funestus*.

Results
- A total of 5,509 adult *Anopheles* mosquitoes were collected from Apr–May 2015 and Nov–December 2015.
- 72% (n= 3966) constituted *A. gambiae* s.l, 18% (n= 991) constituted *A. funestus*, and 2% (n = 113) were other anopheline mosquitoes (summarized in Figure 2).
- PCR confirmed the presence of *A. arabiensis*, *A. quadrimanus*, and *A. funestus s.s* in the study sites.

Results continued
- *A. arabiensis* mainly bit humans outdoors (0.55) rather than indoors (0.45), (ANOVA: F=7.1294, df=11, P=0.0217). In contrast, *A. funestus* mainly bit humans indoors (0.55) rather than outdoors (0.45), ANOVA: F=6.55, P=0.03.

Conclusions
- Standard WHO bioassays indicate that populations of *A. arabiensis* are resistant to deltamethrin; mortality rates ranged from 78% to 95% (Figure 4).
- In *A. funestus*, high resistance was detected to deltamethrin (mortality rates ranged from 14% to 42%) and bendiocarb (mortality rates ranged from 41% to 56%).
- In all the study sites, *A. arabiensis* and *A. funestus* recorded 100% susceptibility to DDT and pirimiphos-methyl.
- Pre-exposure of *A. arabiensis* and *A. funestus* to piperonyl butoxide nullified both pyrethroid and carbamate resistance.

Figure 1. Map of Zambia showing study sites in Southern Province

Figure 2. Vector species composition in the study areas of Southern Province

Figure 3. Biting behaviour of *Anopheles arabiensis* and *funestus* in the study areas of Southern Province

Figure 4. WHO bioassays of malaria vectors in the study areas of Southern Province