Q-Plex™ Human Micronutrient (7-Plex)
Version 2.0

The results of a continuing collaboration between PATH and Quansys Biosciences

October 23, 2020

Authored by: Andy Nelson, PhD., Ryan Parr, PhD.,
Abby Tyler, Chris Lyman
Introduction

Micronutrient deficiency (MND) can have systemic and enduring repercussions upon an individual as well as their offspring (1). MNDs affect populations across the globe, but disproportionately affect children and women of reproductive age in low- and middle-income countries (LMIC). MNDs can significantly reduce quality of life and have deadly consequences if left untreated. Public health surveillance programs are needed to identify populations at risk and determine the appropriate interventions to apply. However, it has been shown that the sustainability of such programs depends upon cost, capacity development, and location of the institutional base (2).

Several organizations have attempted to provide comprehensive platforms to address the needs of public health surveillance programs. Well characterized methods are often available only in testing centers outside the region or country. An important group to note here is the VitMin Lab (Willstätt, Germany), which is often considered the gold standard in measuring micronutrients via a traditional sandwich ELISA approach (3). However, this preference creates a high demand for services from one lab and limits capacity to provide services in new studies. In addition, other labs have been unable to reproduce the VitMin Lab methodology, further enhancing the VitMin Lab’s exclusivity while also creating a barrier to countries when sample export is prohibited (4). Thus, there exists a need for an affordable, accurate, and easy to implement and use assay that fits the needs of public health surveillance programs in LMICs.

Q-Plex™ Human Micronutrient (7-Plex) 1.0 and critical feedback

Originally introduced in 2014, the Q-Plex Human Micronutrient (7-Plex), a multiplex ELISA, was developed as a collaboration between PATH (Seattle, WA, USA) and Quansys Biosciences (Logan, UT, USA). The Q-Plex Human Micronutrient (7-Plex) simultaneously assessed the level of 5 analytes, including ferritin, C-reactive protein (CRP), α-1-acid glycoprotein (AGP), soluble transferrin receptor (sTfR), and retinol binding protein 4 (RBP4) (5). The multiplex ELISA allowed for more data to be generated and collected from small blood samples compared to traditional ELISAs. Additionally, unlike other multiplex ELISA platforms, such as the Luminex and MagPix platforms that rely on a fluidics system that may require specialized facilities, training, and service, the Q-Plex Human Micronutrient (7-Plex) was designed upon and followed a conventional ELISA protocol, requiring relatively little training and specialized equipment. In 2017, the Q-Plex Human Micronutrient (7-Plex) panel of analytes was expanded to include thyroglobulin and histidine rich protein II. This broadened the assay’s capabilities, allowing it to indicate iodine status as well as whether the patient was infected or recently infected with Plasmodium falciparum malaria (6,7). Additionally, the use with dry blood spots (DBS) as a specimen type was determined to work well for all analytes except for ferritin, which in DBS is known to reflect a mixture of ferritin from serum along with extraneous ferritin from lysed red blood cells, confounding test results (8).

The Q-Plex Human Micronutrient (7-Plex) assay was tested extensively by labs outside of Quansys Biosciences and PATH to verify performance before wide deployment in the field. External testing demonstrated good correlation for many of the analytes but identified concerns about data correlation with more established methods. One study demonstrated differences between data generated from the Quansys Q-Plex Human Micronutrient (7-Plex) and the VitMin Lab, and notably in differences between the sTfR, AGP, RBP4, along with the sensitivity of the ferritin assay (4). A second study comparing The CDC study compared Quansys ferritin, sTfR, CRP, and AGP with Roche clinical analyzer for Fer, sTfR, CRP and AGP and an retinol HPLC reference standard supported some of these findings, highlighting the variability of sTfR and RBP (9).
The CDCs ongoing external quality assurance efforts to improve standardization of MN assays provided a supportive platform to validate outside findings. Forty samples characterized in duplicate over 10 individual runs by a Roche clinical analyzer for CRP, sTfR, Ferritin, AGP, and retinol HPLC were obtained from the CDC Method Performance Certification program. Data from these samples generated on the Q-Plex Human Micronutrient (7-Plex) show good correlation to the CDC’s reference values for ferritin and CRP (Fig. 1A-B), however, the trendline slope and R2 values for the AGP, sTfR, and RBP4 correlations align with the findings from previous studies (Fig. 1C-E). Data is not shown here for thyroglobulin as the CDC reference samples have not been characterized for this analyte.

Taken together, these data and the feedback provided by third party assessments clearly highlighted the areas in need of refinement in order for the Q-Plex Human Micronutrient (7-Plex) assays to be a viable alternative to existing methods. Briefly, the main points are as follows:

- Sensitivity of ferritin assay
- Precision of RBP4 assay
- Correlation of sTfR and AGP data with established methods

Q-Plex Human Micronutrient (7-Plex) 2.0 and Data

To address the areas in need of improvement, Quansys refined the tool to generate Q-Plex Human Micronutrient (7-Plex) 2.0. Specifically, a new capture antibody improved sensitivity of the ferritin assay, while still maintaining the correlation with the reference samples (Fig. 1F). This has shifted the assay range to ensure that the sample distribution falls more consistently into the middle of the quantifiable range, which leads to more accurate and precise measurement of samples with low levels of ferritin. (Fig. 2A).

The lack of precision observed for RBP4 was determined to be associated with samples falling at or above the upper limit of quantification of the assay. To address this challenge, the assay was re-calibrated to ensure that all endogenous samples, not just samples from individuals deficient in Vitamin A, fall into the linear portion of the standard curve where quantitation is more precise (Fig. 2B). This was made possible by the heightened sensitivity of the ferritin assay, which allowed an increase in the working dilution of the sample from 1:10 for version 1.0 to 1:40 in version 2.0.

AGP, CRP, thyroglobulin (Tg), histidine rich protein-2 (HRP2) and sTfR were all re-optimized under the 1:40 sample dilution method established for RBP4 and ferritin (Fig. 1G-J). Performance characteristics for CRP, Tg, and HRP2 did not significantly change with the new sample dilution factor (Fig. 1G and Fig. 2D-F). For AGP and sTfR, results show that the optimization improves correlation to the reference values while also shifting data points away from the limits of quantification (Fig. 2C-D).
The final step in improving the Q-Plex Human Micronutrient (7-Plex) assay was to remove a technological barrier that may cause lab to lab variation when processing samples with the same kits and materials. Version 2.0 of the assay is optimized without the need for a plate shaker throughout the incubation steps of the protocol. This not only eases the burden of equipment requirements but also eliminates any variability generated from differences between plate shakers operating at variable speeds. Taken together, the newly optimized Q-Plex Human Micronutrient (7-Plex) 2.0 assay addresses feedback in the following ways:

- Improved sensitivity of ferritin assay
- Improved precision of RBP4 assay
- Improved correlation of sTfR and AGP data with established methods
- Removed need for plate shaker

Discussion and Future Directions

The data presented here demonstrate the significant improvements to the Q-Plex Human Micronutrient (7-Plex) assay arising from the combined efforts of Quansys working closely with PATH, the CDC, and several individual labs focused on addressing global MND concerns. Like the Q-Plex Human Micronutrient (7-Plex) 1.0, the newly optimized Q-Plex Human Micronutrient (7-Plex) 2.0 assay will be validated for analyzing data generated from DBS and dried serum spots. Ongoing and future collaborations will focus on establishing new and improved standards for sTfR and providing additional data demonstrating the correlation between RBP4 and retinol.

The Q-Plex Human Micronutrient (7-Plex) 2.0 is an accurate and affordable tool for measuring micronutrients in blood, serum and plasma sample types collected as part of related public health surveillance programs. Currently a kit is priced at $400 USD for researchers in LMICs, enabling the testing of 40 unique samples in duplicate and standards against the 7 analytes on one plate. With ease of use of a traditional ELISA protocol, the platform will help facilitate testing within the survey country.
Figure 1 – Q-Plex Human Micronutrient (7-Plex) optimization improves correlation with Performance Verification Panel

Figure 2 – Performance verification data falls along readable portion of standard curves
Bibliography

